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Summary. An approximate method with explicit solu- 
tions to apply independent culling levels for multiple 
traits in n-stages of selection was developed. An approx- 
imate solution was found for sequentially selected traits. 
Two assumptions were necessary. The first was to assume 
that subsequent selection would not appreciably change 
the mean of traits already selected, and the second was to 
approximate the variance of a correlated trait in a select- 
ed population with an upward biased projection. The 
procedure was shown to give near optimal results regard- 
less of selection intensity or genetic correlations ifpheno- 
typic correlations among traits were low. The procedure 
gave poor results only for certain sequences of selection 
when phenotypic correlations were high. However, in 
those cases good results were obtained using a different 
sequence of selection. With high correlations, the proce- 
dure is recommended only after comparing solutions and 
expected genetic gain for all sequences of selection. I f  the 
expected aggregate gain for the sequence of selection 
desired is less than that of another order, culling points 
associated with the optimal ordering must be deter- 
mined. Genetic gain from use of culling points is indepen- 
dent of order of  selection. The procedure is recommend- 
ed for use with computer programs that attempt to find 
optimal culling points to reduce computational time and 
to check results. 
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Introduction 

Economic merit of an animal usually depends on many 
traits. These traits should be considered simultaneously 
when a selection program is conducted. Three methods 
of selection are available for the improvement of  multiple 
traits: index selection, independent culling levels, and 
tandem selection. Theoretically, index selection is the 
optimal method for multitrait improvement, with maxi- 
mum superiority when traits are equally important 
(Young 1961). 

In practice, independent culling levels may be pre- 
ferred because the independent culling method is more 
intuitive and convenient to use and also allows animals to 
be culled as traits become available without waiting until 
all traits are measured (Hazel and Lush 1942). Indepen- 
dent culling may be applied either simultaneously or se- 
quentially to each trait by use of either truncation points 
or proportions selected. 

I f  truncation points are used, the procedure is the 
same for either simultaneous or sequential selection. If  
proportions are used, the percent saved for each trait 
with simultaneous and sequential selection refers respec- 
tively to the unselected population and the fraction of the 
population remaining after each culling. Proportions for 
simultaneous selection can be obtained from tables if the 
truncation points are known and the traits have a multi- 
variate normal distribution (Falconer 1981). Proportions 
for sequential selection, however, are difficult to deter- 
mine since the values depend on correlations among 
traits. If  truncation points and other genetic parameters 
are known, and the traits are multivariate normal, the 
CULLTEST program of Saxton (]989) will compute 
these proportions by numerical integration. The proce- 
dure outlined in this paper also gives sequential propor- 
tions. 
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The practical problems with independent culling are 
(1) how to choose the proper truncation point for each 
trait to obtained a desired genetic gain, or (2) for a given 
fixed total proport ion selected, how to allocate the selec- 
tion intensity to each trait to maximize gain in economic 
merit. Haze1 and Lush (1942) used a table which lists 
different combinations of  proportions selected for each 
trait to find the optimum combination for maximum 
economic gain. Young and Weiler (1961) and Williams 
and Weiler (1964) developed charts useful for such intu- 
itive schemes. Smith and Quaas (1982) derived an itera- 
tive method to obtain optimum truncation points. Brown 
(1967), Namkoong  (1970) and Cotterill and James (1981) 
also investigated two-stage independent culling selection 
for n-traits and developed some tabular solutions. Re- 
cently, Saxton (1989) developed a computer program to 
find optimum culling levels for up to seven stages. 

With the advent of  Saxton's (1989) program there is 
little need for tabular procedures for two-stage selection, 
provided computer availability, which may not always be 
the case, especially in developing countries. For  more 
than two stages, Saxton (1989) acknowledges that his 
program requires extensive central processing time even 
on large mainframe computers, with costs that may be 
prohibitive. Also, the program is based on a nonlinear 
optimization procedure that may converge to a local 
maximum rather than the global maximum. 

An approximate method of  independent culling level 
selection for any number of  traits, with individuals select- 
ed in any number of  stages, is described in this paper. 
This procedure may be used in conjunction with Saxton's 
(1989) program for either checking results for conver- 
gence to a local maximum or could be incorporated into 
the program to provide a starting point and thus elimi- 
nate the need for a grid search. 

Theory and notation 

Assume that k correlated traits, following a multivariate 
normal distribution, are to be selected by independent 
culling levels in k stages. If  pj is the proport ion selected 
based on thej th trait, then the total proport ion selected is 
the product of  the proportions p = p 1 P2 P3 ...  Pk" Let Xj 
and #j be respectively means of  the selected and overall 
populations for the jth trait. The problem is how best to 
obtain the proportions to satisfy a breeder's objective. 

Define Ag* as the unstandardized genetic gain vector, 
A as the additive genetic variance-covariance matrix, 
P as the phenotypic variance-covariance matrix, and c as 
the simultaneous selection intensity vector. Let corre- 
sponding elements from each matrix be denoted as Ag*, 
aij, Pij, and c i. Also, let S be a diagonal matrix with 
elements si~ = (pll) 1/z. The following relationships can be 
expressed as products of  these matrices. 

(a) The standardized genetic variance-covariance matrix: 

H = S -  1 A S - 1, with elements hlj. (1) 

(b) The phenotypic correlation matrix: 

R = S - 1 p S -  1, which elements rij. (2) 

(c) The genetic gain vector in standardized units: 

Ag = S -  1 AO.  ' with elements Ag i . (3) 

I f  selection is based on trait m only, then 

cj =rim c m. (Turner and Young 1969) (4) 

Using this relationship, it can be shown that for mass 
selection based on individual phenotypes, the genetic 
gain vector in standardized units may be expressed as: 

A g = H R  -1 e (5) 

which is an extension of  Young and Weiler's (1961) equa- 
tions (11) and (15). Thus, if the desired genetic gain is 
given, the simultaneous selection intensity vector can be 
found by rearrangement of  equation (5): 

c = ( H R  1) lAg" (5') 

Unfortunately this equation is not very useful since the 
simultaneous proportions, and hence truncation points, 
cannot be easily determined from selection intensities. 
The tabular association between selection intensity and 
percent saved given by Falconer (1981) 

% = (Xj - ~j)/aj 

is based on assumptions that the population from which 
the observations were sampled was infinite in size and the 
trait was normally distributed with a mean of  #j and 
standard deviation a j; thus cj will have a unit normal 
distribution with a mean of  zero. In contrast, the simulta- 
neous selection intensity for the jth trait is 

Cj(k- l )=  [Xj (k- 1) -  #j]/O'j 

where Xj(k-1~ is the mean of  the jth trait given that k - 1  
other traits were also selected. The selected population 
has neither a mean of  #j nor a standard deviation of  a j; 
therefore cj (k- 1) will have neither a mean of  zero nor unit 
variance. 

An approximate solution can be found by assuming 
that subsequent selection will not  appreciably change the 
mean or variance of  traits already selected. This assump- 
tion is valid if correlations among traits are small, but 
will be increasingly transgressed as phenotypic correla- 
tions among traits become strong. 

If  traits are selected in the order 1, 2, . . . ,  k, the pro- 
gressive standardized selection differentials are defined 
as the sequential selection intensities. Assuming that sub- 
sequent selection will not appreciably change the mean of  
traits already selected, the sequential selection intensity 



vector is ] [- (x1-#1)/0"1 ] 
d =  d2(1) = . (6) 

2 where #k(k- 1) and 0-k(k- 1) are the conditional expectation 
and variance of  trait k given that the previous k -  1 traits 
have been selected. The utility of  d is that  it is in a form 
for which tabular solutions can easily be found since the 
Xk(k-1) are sampled f rom a populat ion with a mean of 
#k(k--1) and standard deviation 0-k(k--1); therefore dk( k_ 1) 
has a unit normal  distribution with mean zero. However,  
in order for this result to be useful, the relation between 
e and d must  be determined. 

Using the previous assumptions, the simultaneous se- 
lection intensity vector reduces to: 

I r 7 

. I [Ck(k-1)J L(Xk(k- 1)-- #k)/0-k.] 

(7) 

The approximate  linear relationship between e and d is: 

e_~T' d (8) 

where T, with elements tij, is the upper triangular 
Cholesky decomposit ion of matrix R such that T ' T  = R, 
i.e., 

t j i=  r i j - -  ~ t iktjk /tjj 
k=l  

( kiZl: 1 2~1/2/ tii : r i i--  tik | �9 

0=1, . . . , i -1 )  

(Martin et al. 1965) 

The basis for this result is as follows (derivation for 
more than two traits is tedious, so only the case of two 
traits is presented, but without loss of generality). 

Under  the assumption of a multivariate normal  distri- 
bution 

#2(1) = #2 -t- r12 0 2 (X 1 --#1)/0-1 (9) 
2 -- 2 12(1)-0-2 ( t - - rZz v) (10) 

where v = c l ( c l - t  ) and t is the point on the abscissa of 
the standard normal  curve above which a fraction Pl of 
the area lies (Cochran 1951; Cotterill and James 1981). 
Note that v is a positive number  between 0 and 1. Thus, 
the exact relationship between 0-2(1 ) and 0-22 is rather com- 
plex, but the following inequality can be assured: 

2 2 2 0-2 (1) ~ G2 (1 -- r 12 )- (11) 
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Substituting equations (9) and (10) into the corre- 
sponding elements of equation (6) gives 

d2(1 ) = x2 (1) - [#2 + rt  2 0"2 (X1 - -  ~1 )/0-1] 
0-2 (1 - r 2 2  v) 1/2 

From inequality (11) 

x2(1)-[#2+r12 0-2 (x l - /q )/0-11 
d2(1) ~ 62(1 - r22 )  1/2 

x2(1)-/~2 r12(xl -#1)/0-1 
d2(1)-< 0-2(1- r~2) u2 (1 - r22 )  1/2 

or upon substituting elements of equation (7) 

c2 (1) - rl 2 cl (2) (12) 
d2(I) -< (t_r22)1/2 

If c 1 is large, v tends to unity and inequality (12) comes 
close to equality, otherwise d2(1) will underestimate its 
true value. In matrix notation, the approximate equation 
is expressed as 

Therefore, 

1 

LC2(1)A 
or  

]_C2 (1)l 

0 ' [ d , ]  
1/(1 --'12!r2 ]1/2]_] d2(1 ) 

[1 0 ] 
d~_T , d.  e ~  

r12 (1 - r22 )  1/2 

where T is the upper triangular Cholesky decomposit ion 
of R. 

A. Determining sequential selection intensities 
./or a desired genetic gain vector 

Combining (5) and (8) 

Ao~-HR - I T ' d .  (13) 

If AO (a desired genetic gain vector) is given, then 

d ~ [ H R -  ~ T'] -~ AO. (14) 

The sequential proportion,  Pjo-1),  for each trait, given 
that j - 1 other traits have already been selected, can then 
be found for corresponding values ofdj  by use of the table 
given by Falconer (p 316, 1981), or an expanded table can 
be generated by using the following relationships: 

t = P R O B I T ( I  - p) 

y = [1/x/~] exp ( -  t2/2) 

i = y / p  
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where p is the percent saved, PROBIT is the inverse of the 
standard normal distribution function (available in sever- 
al computer software packages such as SAS 1985), which 
returns t the point of truncation, y is the ordinate of the 
standard normal distribution at t, and i is the standard- 
ized selection differential. 

Consider the following numerical example: [ioo I iloo41o5 L e t S =  5 0 R=  0.4 1.0 0.6 

0 2.5 0.5 0.6 1.0 

[!2il A= 4 and Ag= 10.20/ 

3 hO.4OJ 

then, 

-0.5556 0.1333 0.2667-] 

H = S  -1 A S - l =  0.1333 0.1600 0.2400 / 

[_0.2667 0.2600 0.4800..] 

The sequential selection intensity vector, d, is 

F 
d ~ [ H R  1 T,I-1 Ag=/0 .2579 /  �9 

[_0.4420_] 

The corresponding sequential proportions are: 

p2,, --1860! 
LP3 (2)d 1_.737_] 

and the total proportion selected is 

P* =Pl  P2(1) P3 (2)='543 x .860 x .737 =.344. 

B. Determining the sequential selection intensities for a 
fixed total proportion selected to maxim&e economic merit 

Economic gain is linear combination of genetic gains 

AE=w'Ag (15) 

where w is the vector of net economic values. The selec- 
tion index method is a well-known procedure for solving 
this problem. Given a fixed proportion selected p, which 
defines i, the overall selection intensity, the genetic gain 
vector which gives maximum economic merit gain in 
standardized units is 

Ag~ = [i/(b' P b) 1/2] S-  1 A b (16) 

where 

b = P  -1 Aw. (17) 

Now, Ag~ can be used as the vector of desired genetic 
gains to solve approximate equation (14). Consequently, 

a set of sequential proportions Pl,  P2 (1), ..-, Pk(k-t) may 
be obtained from tables generated using the standard 
normal distribution as previously described. However, 
p*, the product Pl P2(1)... P k ( k - 1 ) ,  will be smaller than 
the desired p because the independent culling procedure 
is theoretically less efficient than index selection. Howev- 
er, if the relative proportions of genetic gains from inde- 
pendent culling and selection index are fairly constant, 
then for any value of p the optimum selection intensity 
vector for independent culling will be some constant 
times the d vector computed for index selection. An ap- 
proximate method of computing this constant is to mul- 
tiply each sequential proportion Pro-1) by e = (p/p.)l/k, 
thus, 

P*(j- 1) = ~ Pj(j- 1), which makes 

p~, , , _ k  
P2(1)  " ' "  P k ( k - 1 )  - ~  Pl P2(11 - . .  P k ( k - 1 ) = P  �9 

The adjusted p*(j_ 1) values will be used for independent 
culling level selection in the remainder of this paper. This 
approximation is reasonably good when the Pro-1)'s are 
between 0.30 and 1.00, since cj(j_l) and Pj(j-1) have a 
nearly linear relationship in that range (Hazel and Lush 
1942). Because the adjustment is a constant multiple for 
each trait, this procedure is not srictly valid and should 
be viewed as an approximation. 

Actual genetic gain expected with this procedure must 
be determined by numerical integration using the pro- 
portions given. However, approximate genetic gain from 
this procedure (AO) can be determined by finding the 
adjusted sequential selection intensity vector (d*) corre- 
sponding to the adjusted proportions and substituting 
this vector for d in equation (13): 

A0=HR -1T' d*. (18) 

Equation (5) is a special case where the number of 
traits measured equals the number of traits to be im- 
proved and stages of selection. However, at each stage 
multiple traits can be selected using an index. If an index 
is used at any stage, the index is simply treated as a trait. 

Consider the following numerical example. For the 
same set of parameters given in the previous example, we 
want to maximize AE with 

given an overall proportion selected of p=.30, i.e., 
i=  1.15897. 

First, predicting Agt by equation (16) 

Agl = [i/(b' P b) 1/21 S-  1 A b 

[-0.4981-] 

=10.2642/  

l_0.5357_1 
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then 

d=[HR 1T,] lAg I 
F0 -q 

=/o.3o34/. 
L0.6648J 

The corresponding sequential proportions are 

Fp ] r4401 
= 1 . 8 3 o / � 9  

[_P3(2)_] [_.585J 

Therefore, 

P* =Pl  P2(1) P3(2) =.214, 

which is smaller than the desired overall proportion of 
p = .30, so 

= (p/p,)l/3 = (.30/.216) 1/3 = 1.1192 

thereby 

I P * ]  [ P l  ] [ .4924] 

p%q=  P2(1) :1 .9289 | .  
P*(2)._] [P3 (2)_] [.6567_] 

Now, p - P 1  P20) P3(2)- .30-p.  From tables generated 
using the standard normal distribution we find 

F 0-~'0] 
d*= 10.145 | . 

/0.562_] 

The approximate gain vector AO estimated by equation 
(18) is: 

[0.4594] 

AO =/0.2/69/ .  
I_0.4499_] 

Evaluation of the approximation 

The adequacy of the approximate method was evaluated 
by numerical multiple integration using the CULLTEST 
and INDCULL programs of Saxton (1989). The CULL- 
TEST program gives the sequential proportions saved, 
expected genetic gains, and total economic return for any 
given set of truncation points. By trial and error, trunca- 
tion points were established such that the sequential pro- 
portions saved for each trait were the same as that saved 
by the approximate procedure. Genetic gains (Ag) and 
aggregate economic improvement (AE) from the approx- 
imate procedure were compared to those obtained with 

optimum culling points, determined by use of the IND- 
CULL program with default parameters set by the pro- 
gram. The accuracy of predicting aggregate change in 
economic value from the approximate method (AI~), us- 
ing Equations 15 and 18, was also examined. 

From assumptions made when deriving the method, 
accuracy of the approximation is expected to be influ- 
enced by selection intensity, magnitude of correlations, 
direction of selection, and sequence in which traits are 
selected. Therefore, for two-stage selection, comparisons 
were computed for several different cases representing a 
wide range of genetic and phenotypic correlations, direc- 
tions of selection, heritabilities, economic weights, order 
of selection, and total proportion selected. 

For three- and four-stage selection, comparisons were 
limited to the case of equal heritabilities of 0.5 and equal 
phenotypic and genetic correlations. For three-trait selec- 
tion, all possible combinations of orders were examined. 
Not all combinations and selection intensities were exam- 
ined with four-trait selection since the computer time 
required was 18 CPU min per combination on an 
IBM 3090. Five-trait selection was not examined due to 
the tremendous amount of computer CPU time required 
per combination (in excess of 10 CPU h). Comparisons 
were based on expected change in aggregate economic 
value (AE). 

Expected selection responses for two-stage selection 
using the approximate and optimum methods are in 
Table I. In some cases the computed relative efficiency o f  
the approximation was greater than I. Obviously this 
result is not possible. Saxton (1989) notes in comments 
sent with his program that the approach is based on a 
Newton-Raphson maximization procedure and that re- 
sults are dependent on a good starting point. Although 
the program evaluated a grid of possible starting points, 
it sometimes failed to converge to the global maximum. 
Thus, the solution given by the program was not always 
optimal. The approximation gave excellent results in all 
cases where the phenotypic correlation was weak. 

With a strong phenotypic correlation, the merit of the 
approximation was dependent on the order of selection, 
in combination with the heritabilities and economic 
weights. The approximation was generally poor in those 
cases in which the first trait selected had both a high 
economic weight and high heritability. 

Expected selection responses for three-trait selection 
using the approximate and optimum methods are given 
in Table 2. Again, some cases were observed in which the 
relative efficiency of the approximation was estimated to 
be greater than 1. Generally, the approximation gave near 
optimum results for weak correlations. From the exami- 
nation of two-stage selection and the assumptions from 
which the theory was based, these results are also expect- 
ed for strong genetic correlations if the phenotypic corre- 
lations are low. 
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Table 1. Expected selection response  (Ag) and  total  economic  gain (AE) for two traits  us ing  approx ima te  and  exact  independen t  
cull ing procedures  for  differing orders  o f  selection, p ropor t ions  selected (p), economic  weights  (w), genetic (rg), and  pheno typ ic  (rp) 
correla t ions  

Case p rp rg Stage h 2 w Independen t  culling a Relat ive 
efficiency b 

A p p r o x i m a t e  O p t i m u m  (1 O0 X A Ea/A E ~ 

PJO - 1) t AO PJO- 1) t Ag 

1 .01 .2 .2 1 .2 .2 85.7 - -1 .07  .26 100.0 - 4 . 0 0  .24 
2 1 1 1.2 2.31 2.64 1.0 2.32 2.66 

2.69 2.72 98.9 

2 .01 .2 .2 2 1 1 1.1 2.30 2.63 1.0 2.32 2.66 
1 .2 .2 94.8 - - .94  .26 100.0 -- 1.99 .24 

2.68 2.71 98.9 

3 .01 .2 .2 1 .2 1 13.0 1.11 .43 15.8 1.00 .42 
2 1 .2 7.7 1.74 2.04 6.3 1.81 2.10 

�9 84 .84 100.0 

4 .01 .2 .2 2 1 .2 3.3 1.84 2.13 2.2 2.00 2.29 
1 .2 1 30.0 .94 .42 45.4 .62 .38 

�9 84 .83 101.1 

5 .01 .2 .8 1 .2 .2 48.2 .04 .98 84.1 - 1.00 .96 
2 1 1 2.1 2.17 2.63 1.2 2.30 2.67 

2.82 2.72 103.7 

6 .01 .2 .8 2 1 1 1.1 2.30 2.67 1.0 2.32 2.66 
1 .2 .2 79.4 - - .94  .96 100.0 -- 1.99 .95 

2.86 2.85 103.3 

7 .01 .2 .8 1 .2 1 33.0 .44 .98 50.0 0.00 .98 
2 1 .2 3.0 2.07 2.57 2.0 2.19 2.63 

1.49 1.50 99.3 

8 .01 .2 .8 2 1 .2 1.6 2.14 2.61 1.0 2.32 2.66 
1 .2 1 61.5 .20 .98 100.0 -- 1.99 .95 

1.50 1.48 101.4 

9 .50 .2 .2 1 .2 .2 97.2 - 1.91 .08 100.0 - 5.60 .07 
2 1 1 51.4 - .02 .78 50.0 0.00 .80 

.80 .81 98.9 

10 .50 .2 .2 2 1 1 51.2 - . 0 3  .78 50.0 0.00 .80 
1 .2 .2 97.7 - 1.81 .08 100.0 - 5.56 .07 

�9 79 .81 97.5 

11 .50 .2 .2 1 .2 1 73.3 - . 6 3  .13 82.5 - . 9 4  .11 
2 1 .2 67.8 - .37 .57 60.6 - .20 .66 

�9 24 .24 100.0 

12 .50 .2 .2 2 1 .2 60.5 - - .27 .63 50.0 0.00 .80 
1 .2 1 82.6 - - .80 .12 100.0 --5.61 .07 

�9 24 .23 104.4 

13 .50 .2 .8 1 .2 1 83.7 -- .98 .28 97.9 - -2 .02  .29 
2 1 .2 59.7 - - .19 .74 51.1 - - .02  .80 

.43 .44 97.7 

14 .50 .2 .8 2 1 .2 54.3 - . 1 1  .77 50.0 0.00 .80 
1 .2 1 92.1 - -1 .25 .29 100.0 - 2 . 3 8  .28 

�9 44 .44 100.0 

15 .50 .2 .8 1 .2 .2 88.6 - 1 . 2 1  .29 100.0 - -3 .19 .28 
2 1 1 56.5 .12 .76 50.0 0.00 .80 

.82 .85 96.5 

16 .50 .2 .8 2 1 1 52.1 - . 0 5  .79 50.0 0.00 .80 
1 .2 .2 95.9 - -1 .57 .29 100.0 - -3 .19 .28 

�9 84 .86 97.7 
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Case p rp rg Stage h 2 w Independent  culling a 

Approximate  Opt imum 

pj(j_~) t Ag PJo-~) t Ag 

Relative 
efficiency b 
(100 x AE"/AE ~ 

17 .01 .8 .2 1 .2 .2 93.9 - 1.55 .24 
2 1 1 1.1 2.66 2.66 

2.71 

18 .01 .8 .2 2 1 1 12.6 1.15 .44 
1 .2 .2 7.9 2.30 .52 

.54 

19 .01 .8 .2 1 .2 1 7.6 1.43 .30 
2 1 .2 13.1 2.25 2.30 

.76 

20 .01 .8 .2 2 1 .2 1.1 2.30 2.49 
1 .2 1 94.4 1.15 .27 

.76 

21 .01 .8 .8 1 .2 .2 59.5 - . 2 4  .95 
2 1 1 1.7 2.33 2.66 

2.86 

22 .01 .8 .8 2 1 1 5.0 1.63 1.43 
1 .2 .2 19.9 2.21 .66 

1.56 
23 .01 .8 .8 1 .2 1 38.0 .31 .95 

2 1 .2 2.6 2.32 2.66 

1.48 

24 .01 .8 .8 2 1 .2 2.9 1.89 1.72 
1 .2 1 34.1 2.08 .73 

1.08 
25 .50 .8 .2 1 .2 .2 98.4 - 2 . 1 4  .07 

2 1 1 50.8 - 0 . 0 1  .80 

.81 

26 .50 .8 .2 2 1 1 73.3 - . 6 3  .21 
1 .2 .2 68.4 - . 0 6  .14 

.24 

27 .50 .8 .2 1 .2 1 68.1 - . 4 7  .10 
2 1 .2 73.4 - . 1 1  .61 

.22 

28 .50 .8 .2 2 1 .2 50.8 - . 0 2  .75 
1 .2 1 98.5 - .92 .08 

.23 

29 .50 .8 .8 1 .2 .2 91.2 -- 1.35 .28 
2 1 1 54.8 0.00 .79 

.86 

30 .50 .8 .8 2 1 1 64.3 -- .37 .49 
1 .2 .2 77.8 - . 1 6  .21 

.54 

31 .50 .8 .8 1 .2 1 85.6 --1.06 .28 
2 1 .2 58.4 - .01 .78 

.44 

32 .50 .8 .8 2 1 .2 59.5 - . 2 4  .57 
1 .2 1 84.0 -- .26 .23 

.34 

100.0 - 4 . 0 0  .24 
1.0 2.32 2.66 

2.71 100.0 

2.6 2.32 2.65 
38.5 .50 .24 

2.70 20.0 

100.0 - 4 . 0 0  .24 
1.0 2.32 2.66 

.77 98.7 

2.6 2.32 2.65 
38.5 .50 .24 

.77 98.7 

100.0 - 4 . 0 0  .95 
1.0 2.32 2.66 

2.86 100.0 

2.6 2.32 2.65 
38.5 .50 .95 

2.84 54.9 

100.0 - 4 . 0 0  .95 
1.0 2.32 2.66 

1.48 100.0 

2.6 2.32 2.65 
38.5 .50 .95 

1.48 73.0 

100.0 - 4 . 0 0  .07 
50.0 0.00 .80 

.81 100.0 

50.0 0.00 .80 
100.0 - 3 . 5 5  .07 

.81 29.6 

100.0 - 4 . 0 0  .07 
50.0 0.00 .80 

.23 95.6 

50.0 0.00 .80 
100.0 - 3 . 1 6  .07 

.23 100.0 

100.0 - 4 . 0 0  .28 
50.0 0.00 .80 

.86 100.0 

50.0 0.00 .80 
100.0 - 3.44 .28 

.86 62.8 

100.0 - 4 . 0 0  .28 
50.0 0.00 .80 

.44 100.0 

50.0 0.00 .80 
100.0 - 3 . 3 1  .28 

.44 77.3 

PJo 1), Sequential propor t ion;  t, t runcat ion point  
b AE a and AE ~ are the expected economic gains f rom truncat ion 
procedures;  AE = w'Ag, 

points  set respectively by the approximate  and I N D C U L L  
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Table 2. Expected total economic gain (A E) for three traits using approximate  and exact independent  culling procedures  for differing 
propor t ions  selected (p), genetic (phenotypic)  correlat ions (r), and economic weights (w) 

Case r Economic  weight Culling procedure  Relative 
efficiency 

Stage Approximate  Opt imum (100 x A Ea/A E ~ 

1 2 3 AE" AE AE ~ 

1 .8 .01 1 1 1 3.64 3.50 3.61 100.7 
2 .8 .01 1 1 - 1 1.34 1.44 1.39 96.6 
3 .8 .01 1 - 1 1 1.38 1.44 1.39 99.4 
4 .8 .01 - 1  1 1 1.13 1.40 1.39 81.4 
5 .8 .10 I 1 1 2.38 2.27 2.37 100.4 
6 .8 .10 1 1 - 1  .81 .92 .87 93.1 
7 .8 .50 1 1 1 1.08 1.00 1.05 102.9 
8 .8 .50 1 1 - 1 .31 .40 .39 74.3 
9 .8 .50 1 - 1 1 .36 .40 .39 92.3 

10 .8 .50 - 1 1 1 .24 .38 .39 61.5 
11 .2 .01 1 1 1 2.48 2.42 2.50 99.2 
12 .2 .01 1 1 - 1 1.87 1.90 1.87 99.8 
13 .2 .01 1 - 1 1 1.87 1.90 1.87 100.0 
14 .2 .01 - 1 1 1 1.87 1.92 1.87 99.8 
15 .2 .10 1 1 1 1.60 1.53 1.61 99.8 
16 .2 .10 1 1 - 1  1.16 1.20 1.17 99.4 
17 .2 .50 i 1 1 .70 .64 .70 99.7 
18 .2 .50 1 1 - i .48 .50 .49 97.9 
19 .2 .50 1 - 1 1 .48 .50 .49 98.7 
20 .2 .50 - 1 1 1 .49 .52 .49 99.9 

" AI~, Approximate  gain estimated using Eq. 18; AE a and AE ~ are the expected economic gains f rom truncat ion points  set respectively 
by the approximate  and I N D C U L L  procedures  

Table 3, Expected total economic gain (A E) for four  traits using approximate  and exact independent  culling procedures  for differing 
propor t ions  selected (p), genetic (phenotypic)  correlat ions (r), and economic weights (w) 

Case r p Economic  weight Culling procedure  

Trait Approx imate  Opt imum 

1 2 3 4 AE" At~ AE ~ 

Relative 
efficiency 
(100 x AEa/AE ~ 

1 .8 .1 1 1 1 1 3.13 2.96 3.12 100.3 
2 .8 .1 1 1 1 - 1  1.53 1.57 1.66 91.9 
3 .8 .1 1 1 - l 1 1.59 1.57 1.66 95.7 
4 .8 .1 1 - 1  1 1 1.64 1.59 1.66 98.9 
5 .8 .1 - 1 1 1 1 .88 1.47 1.66 52.8 
6 .8 .1 1 1 - 1  - 1  .32 .69 .43 75.0 
7 .8 .1 1 - 1 1 - 1 .39 .65 .43 90.3 
8 .8 .i - 1 1 1 - 1 .40 .65 .43 92.7 
9 .8 .i 1 - 1 - 1 1 .40 .65 .43 92.7 

10 .8 .I - 1  1 - 1  1 .39 .65 .43 90.3 
11 .8 .1 - 1  - 1  1 1 .32 .69 .43 75.0 
12 .8 .5 1 1 1 1 1.41 1.31 1.36 104.2 
13 .8 .5 1 1 1 - 1 .65 .69 .75 86.9 
14 .8 .5 1 1 - 1  - 1  .09 .30 .13 72.0 
15 .2 .1 1 1 - 1  - 1  1.19 1.27 1.20 99.0 
16 .2 .5 1 1 - 1 - 1 .47 .53 .48 99.5 

AI~, Approximate  gain est imated using Eq. 18; AE" and AE ~ are the expected economic gains f rom truncat ion points  set respectively 
by the approximate  and I N D C U L L  procedures  
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The worst efficiencies, Cases 4, 8, and 10, occurred 
with combinations of strong correlations and certain or- 
ders of antagonistic selection. With the same genetic 
parameters and other orders of selection, near optimal 
results were obtained. 

Since the approximation appeared to work well for 
two- and three-trait selection with low correlations, fur- 
ther comparisons using four traits were mainly restricted 
to cases of high correlations. However, some combina- 
tions which gave poor  relative efficiencies with high cor- 
relations were further examined with low correlations. 
Expected selection responses for four-trait selection using 
the approximate and exact methods are in Table 3. Two 
cases with computed relative efficiencies greater than 1 
occurred with high correlations and non-antagonistic se- 
lection. In general, the same results as with two- and 
three-stage selection were observed. With weak correla- 
tions, the approximation gives excellent results; with high 
correlations, the order of selection is important. Howev- 
er, for a given set of genetic parameters, an order could 
usually be found which gave near optimal results. 

Also, equation (18) overestimated expected genetic 
gain if selection was antagonistic and underestimated it 
otherwise. Relative bias increased as the magnitude of 
correlations increased or as selection intensity decreased. 

From these results some general conclusions can be 
made. With weak phenotypic correlations among traits, 
the approximate method gives excellent results for any 
number of stages, selection intensities and economic 
weights. With strong phenotypic correlations, the relative 
efficiency of the approximation is dependent on order of 
selection. Thus, with high correlations, the procedure is 
only recommended after comparing the solutions and 
expected genetic gain for all orders of selection. If the 
solution for the order of selection desired is less than that 
of another order, culling points associated with the opti- 
mal ordering must be determined. Genetic gain from the 
use of culling points is independent of order of selection. 

Discussion 

The main advantage of the method presented is that it 
provides a general formula for any number of stages of 
selection with explicit solutions. A general formula for 
more than two-stages of selection was not previously 
available. If a computer is not  available, this approxima- 
tion can be used with confidence for all cases in which the 
phenotypic correlations among traits are small. 

If a computer is available, the approximation may be 
used to establish starting points for Saxton's (1989) pro- 
gram. His program uses a grid search of all possible 
independent culling truncations, with the best of these 
used to start the search for the combination giving opti- 
mum gain. Saxton notes that the grid search generally is 
responsible for most of the computation time. The ap- 
proximation can determine a good starting point and 
thereby eliminate the grid search. Also, Saxton's program 
gives expected gain from index selection as an upper limit 
so that obviously invalid results can be excluded. The 
approximation can also establish a useful lower bound. 
There were cases in Tables 1, 2, and 3 in which the results 
produced by Saxton's program appeared valid when 
compared to response expected with selection index. 
However, those cases were determined to be local maxi- 
ma when compared to response expected with the ap- 
proximation. 
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